Using a custom evaluator agent with specific instructions
This example demonstrates using a custom evaluator agent with specific instructions for evaluation.
1
Add the following code to your Python file
agent_as_judge_custom_evaluator.py
Copy
Ask AI
from agno.agent import Agentfrom agno.eval.agent_as_judge import AgentAsJudgeEvalfrom agno.models.openai import OpenAIResponsesagent = Agent( model=OpenAIResponses(id="gpt-5.2"), instructions="Explain technical concepts simply.",)response = agent.run("What is machine learning?")# Create a custom evaluator with specific instructionscustom_evaluator = Agent( model=OpenAIResponses(id="gpt-5.2"), description="Strict technical evaluator", instructions="You are a strict evaluator. Only give high scores to exceptionally clear and accurate explanations.",)evaluation = AgentAsJudgeEval( name="Technical Accuracy", criteria="Explanation must be technically accurate and comprehensive", scoring_strategy="numeric", threshold=8, evaluator_agent=custom_evaluator,)result = evaluation.run( input="What is machine learning?", output=str(response.content),)print(f"Score: {result.results[0].score}/10")print(f"Passed: {result.results[0].passed}")